
International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             29 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

Cluster Computing of Nucleotide Sequence by 
Fractal Analysis  

Deepa Mary Mathews, Research Scholar, Dr M.G.R.Educational & Research Institute, Chennai 
Dr.K.S.M.Panicker, Professor, Federal Institute of Science and Technology [FISAT], Angamaly, Kerala 

 

Abstract—The nucleotide sequence has capacity to represent information. Biological DNA represents the information which directs the 
functions of a living thing. Sequences can be read from the biological raw material through DNA sequencing methods. Cluster computing 
for nucleotide sequence by fractal analysis can be useful for identifying certain diseases. Very long sequences of nucleotide were checked 
with parallel search methods of cluster system. This paper uses box counting algorithm for fractal analysis. The implementation of fractal 
analysis in cluster system is done by parallel computing load balancing method. Finally performance of fractal analysis is tested. This pa-
per, proposing new enhancement that can be included for nucleotide sequence analysis application programme by implementing MPI 
communication on clusters. 

Index Terms— Box Counting method, Cluster Computing, Fractals, Fractal dimension, Message Passing Interface, Nucleotide sequence,    
Parallel Computing  

——————————      —————————— 

1 INTRODUCTION                                                                     

 nderstanding the relationship between genetic varia-
tion and biological function on a genomic scale will be 

helpful in providing fundamental new insights into biolo-
gy, evolution and the path physiology of human diseases. 
DNA sequencing is the process of determining the exact 
order of nucleotides within a DNA molecule. It includes 
any method or technology that is used to determine the 
order of the four bases—adenine, guanine, cytosine, and 
thymine—in a strand of DNA. The sequence of the DNA of 
a living thing encodes the necessary information for that 
living thing to survive and reproduce. Therefore, determin-
ing the sequence is useful in fundamental research into 
why and how organisms live, as well as in applied subjects.  
DNA sequencing may be used to determine the sequence of 
individual genes, larger genetic regions (i.e. clusters of 
genes or operons), full chromosomes or entire genomes. 
Depending on the methods used, sequencing may provide 
the order of nucleotides in DNA or RNA isolated from cells 
of animals, plants, bacteria, or virtually any other source of 
genetic information. Because of the importance of DNA to 
living things, knowledge of a DNA sequence may be useful 
in practically any biological research. For example, 
in medicine it can be used to identify, diagnose and poten-
tially develop treatments for genetic diseases. Similarly, 
research into pathogens may lead to treatments for conta-
gious diseases.  

Fractal analysis is a new tool that is being applied to surface 
science so that we can enhance our ability to work with 
surfaces. Fractal analysis involves finding the order within 
a disordered system and then describing the system in 
terms of non-integral dimensions. Fractal analysis is as-
sessing fractal characteristics of data. It consists of several 
methods to assign a fractal dimension and other fractal 
characteristics to a dataset which may be a theoretical da-
taset or a pattern or signal extracted from phenomena in-
cluding natural geometric objects, sound, market fluctua-

tions, heart rates, digital images, molecular motion, net-
works, etc. In the area of computer graphics we use fractal 
methods to generate displays of natural objects and visuali-
zations of various mathematical and physical systems. We 
can describe the amount of variation in the object detail 
with a number called the fractal dimension which is topo-
logical dimension value of the object. 

Fractal methods have proven useful for modeling a very 
wide variety of natural phenomena, so fractals can be used 
to analyze many biologic structures not amenable to con-
ventional analysis. There are many complex biological 
structures that cannot be easily modeled by simple shapes. 
The analysis of Trabecular bone, Regional distribution of 
pulmonary blood flow, pulmonary alveolar structure, 
mammographic parenchyma pattern as a risk for breast 
cancer, regional myocardial blood flow heterogeneity, frac-
tal surfaces of proteins, distribution of arthropod body 
lengths are often fractal processes in nature. 

Cluster computing method is an efficient form of infor-
mation processing which emphasizes the exploitation of 
concurrent events in the computing process. Concurrency 
can be achieved by parallelism, simultaneity and pipelining 
method. This level requires the development of parallel 
processable algorithms, depending on the type of applica-
tions. Data dependency analysis is often performed to re-
veal parallelism among instructions. Vectorization is re-
quired among scalar operations within each instruction 

Even though, the speed up that can be achieved by a cluster 
computer with n identical processors is at most n times 
faster than a single processor, in practice, speed up is much 
less, since some processors are idle at a given time because 
of conflicts over memory access or communication paths. 
Our algorithm to parallel search clusters tries to minimize 
these conflicts over memory access by certain mutual exclu-
sion methods. 

U 

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Operons


International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             30 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

 

2 BOX COUNTING METHOD FOR FRACTALS 
COMPUTATION 

Nowadays fractals can be computed by fractal calcula-
tors, with front end and Java or .Net languages. Several 
methods exist for fractal computations. Similarity meth-
ods, geometric method and box counting methods are 
some of them. Similarity method and geometric method 
require you to measure the size of the object; in most of 
the situations measurement of the size of the object will 
not be possible.  

In the box counting method, the Euclidean space [1] con-
taining the image is covered with a grid, and then count 
how many boxes of the grid are covering part of the im-
age. Then we do the same thing but using a finer grid 
with smaller boxes. By shrinking the size of the grid re-
peatedly, we end up more accurately capturing the 
structure of the pattern. In box counting method, instead 
of finding the exact size of the fractal, we count the 
number of boxes that are not empty. Let this number be 
N. Making the boxes smaller gives you more details, 
which is same as increasing the magnification. The mag-
nification e is equal to 1/h. With this method, we can 
change the fractal dimension D = log N / log (1/h). 
Making the h smaller will make the dimension more 
accurate. For 3D fractals, you can do the same with cube 
instead of squares and for 1D fractals, you can use line 
segments. Fractal calculators (FDC) use this formula to 
calculate dimension. FDC can be freely downloaded for 
evaluation. It is fully functional except that offset sam-
pling (a critical feature for good estimate of fractal di-
mension) is not enabled. Cluster based fractal dimension 
calculation has not studied yet. Actually very limited 
research groups works on the area of fractal computa-
tion in spite of its wide range of applications. 

3 DESIGN OF CLUSTER ALGORITHM FOR NUCLEOTIDE 
FRACTALS 

Plotting a 2D graph for the given sequence was the first 
step for values of Adenine (A), Thymine (T), Guanine 
(G) and Cytosine (C) were entered from the terminal 
after considering various aspects of A, T, C & G such as 
molecular weight, electronic charge, strength of chemical 
bonds, Vander-Wall force etc. Then place an arbitrary 
grid over the plotted graph and count how many boxes 
in the grid are filled by the fractal structure. The process 
is then repeated with a grid half the size of the previous 
one. Now, the data from repeated operation are tabulat-
ed and plotted on a log-log plot with log (1/box size) as 
X-axis and log (no of boxes) on Y-axis. A linear regres-
sion is done to find the best fit. The slop of this line is 
used to calculate the fractal index.  

 

Correlation Fractal Dimension Algorithm: 
 Compute fractal dimension D of a dataset A (box 
count approach) 
 
Input: Normalized dataset A (N rows, with E 
dimensions/attributes each) 
Output: Fractal dimension D 
 
Begin 
For each desirable grid-size r = 1/2j , j= 1,2,…l 
     For each point of the data set 
 Decide which grid cell it falls in     
                (say, the i-th cell) 
            Increment the count Ci  
                  ( ‘Occupancy’) 
           Compute the sum of occupancies 
                   S(r) = Σ Ci2 
Print the values of log(r) and log(s(r))     
              generating a plot; 
Return the slop of the linear part of the   
           plot as the fractal dimension D of   
           the dataset A 
End 

 

Now, implementation of box counting on computer clus-
ters: 

Implementing a 500 character length nucleotide for frac-
tal analysis with a P4 HT PC will take more than 25 
minutes. So you can image the amount of time required 
for a nucleotide of 20,000 more needed for fractal analy-
sis. So we decided to implement fractal analysis by a 
parallel computation method of a cluster. We have de-
signed a load balancing algorithm for each processor. 

It is mainly proposed for a cluster based super compu-
ting system where the communication cost is not very 
large as resources are connected through a high band 
width network. Here, at every status exchange time pe-
riods Ts, each Pi communicates its status (queue length, 
estimate of the arrival rate) to all its buddy processors. 
At each estimation instant Te, every processor calculates 
the queue length on buddy processors using the esti-
mated arrival rate and exact service rate of a buddy pro-
cessor. Pi will make a decision of job migration if its 
queue length is greater than the average queue length in 
its buddy set. 

In this design, each Pi estimates its arrival rate, service 
rate and the load at each status exchange instant. At each 
estimation instant, Pi calculates the load on processors. 
Based on this calculated buddy load, each processor cal-
culates the average load in its buddy set. Pi will make a 
decision of job migration if its load is greater than the 
average load in its buddy set and will try to distribute its 
load such that load on all buddy processors get finished 
at almost the same time, taking in to account the node’s 
heterogeneity in terms of processor speed. This average 
buddy load can be calculated using the following rela-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             31 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

tionships. 

Let Si denote the weight of a processor Pi which is a 
normalized measure of its speed. Therefore, a value of 2 
for Si means that Pi will take half amount of time to exe-
cute a job than the time taken by the reference processor 
having a value of 1 for (Normalized speed measure from 
Pi) Si. Here, each Pi will calculate the average normal-
ized buddy load using the value of Estimated load on 
buddy processor Pk calculated by Pi at time T ( Lk,i (T)) 
and Si by the following equation: 

NBLavg=Σ k € buddyset i Sk * Lk,i (T)/Σ k € buddyset j Sk 

NBLavg indicates the average load for a reference proces-
sor. Pi is considered as a sender processor if NBLavg < Si 
* Li(T), where Li(T) is estimated load on Pi at time T. 
Now, Pi will try to transfer its extra load to all receiver 
processors Pk such that they receive extra load based on 
their current load (Lk,i (T)) and processor weight (Sk). 

4   IMPLEMENATION OF ALGORITHM ON DHAKSHINA 
CLUSTER SERIES-I  

Dhakshina Cluster Series I is a High Performance Com-
puting System developed by the FISAT faculty & Free 
Software Cell using the Beowulf Architecture, with a 
peak speed of 180 Giga Flops. Linux clusters network 
topology, programming environments, batch and inter-
active computations, are key factors for the implementa-
tion of fractals computation. The control node provides 
services such as Dynamic Host Configuration Protocol 
(DHCP), Domain Name System (DNS), and Network 
File System (NFS). In addition, the portable batch system 
(PBS) and the scheduler are usually installed on this ma-
chine. Redundancy is required on hardware and data 
because; unlike in the case of compute nodes, the failure 
of the control node may affect the availability of the en-
tire cluster. The use of redundant fans, redundant power 
supply and RAID (to protect the data) is common. Clus-
ter manager takes control of the nodes and collects Sim-
ple Network Management Protocol (SNMP) alarms. It is 
difficult to store large amounts of data on a single server 
or on one of the cluster nodes; there is a need for a SAN 
(Storage Area Network), or dedicated servers. The cluser 
nodes in the Dhakshina are interconnected using the 
Gigabit Ethernet LAN. The data transfer takes place at 
the speed of around 990 Megabit per second among the 
servers and around 665 Mb per second among the client 
nodes.  

4.1 The Application Programming Interface 

Dhakshina uses the Message Passing Interface (MPI) to 
enable the application of nucleotide sequence analysis to 
communicate among nodes. MPI is equally suitable for 
large parallel machines and for smaller environments 
such as a group of workstations. Since clusters of work-

stations are readily available at many institutions, it has 
become common to use them as a single parallel compu-
ting resource running MPI programs. The MPI standard 
facilitates portability and platform independent compu-
ting. As a result, users can enjoy cross-platform devel-
opment capabilities as well as transparent heterogene-
ous communication without much difficulty. 

MPI's goals are high performance, scalability, and porta-
bility. Generally considered to have been successful in 
meeting these goals, it is a crucial part of fractal analysis 
of nucleotide sequence. Most MPI implementations con-
sist of a specific set of routines (API) callable from 
Fortran, C, or C++ and from any language capable of 
interfacing with such routine libraries. Bio-perl and mpi-
pearl library functions of the high level object oriented 
programming language Perl helped this project work to 
identify fractional dimension. MPICH is a freely availa-
ble, portable robust and flexible implementation of the 
MPI (Message Passing Interface), a standard for mes-
sage-passing libraries. It implements both MPI-1 and 
MPI-2. MPICH is a developed program library. MPICH 
is a multi-platform, configurable system (development, 
execution, libraries, etc) for MPI. It can achieve parallel-
ism using networked machines or using multitasking on 
a single machine. LAM/MPI is a high-quality open-
source implementation of the Message Passing Interface 
specification, including all of MPI-1.2 and much of MPI-
2. From its beginnings, it was designed to operate on 
heterogeneous clusters. Several transport layers, includ-
ing Myrinet, are supported by LAM/MPI. With TCP/IP, 
LAM imposes virtually no communication overhead, 
even at gigabit Ethernet speeds. 

5   PEFORMANCE EVALUATION 
The benchmark tests were conducted using HPLinpack 
1.0a (High Performance Linpack), a common bench-
marking utility for high performance systems, devel-
oped by Innovative Computing labs, UTK. Initially, the 
hpl.conf file was modified. The configuration was fine-
tuned to extract maximum output from the nodes. The 
program with sequence analysis for fractal computation 
as proposed by algorithm -1 was then run on the cluster 
using the Message Passing Interace (MPI). 

5.1 Test Results 
The results of the benchmark test  (for 32 nodes) are 
provided below: 
============================= 
HPLinpack 1.0a -- High-Performance Linpack bench-
mark --   January 20, 2004 
Written by A. Petitet and R. Clint Whaley, Innovative 
Computing Labs., UTK 
============================= 
An explanation of the input/output parameters follows: 
T/V: Wall time / encoded variant. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             32 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

N: The sequence of characters of A,T,C,G in                                                                  
some   order. 
NB   : The partitioning blocking factor. 
P      : The number of process sequence. 
Q      : The number of process log values for calculating  
fractals. 
Time   : Time in seconds to solve the linear system. 
Gflops : Rate of execution for solving the linear system. 
The following parameter values will be used: 
N      :   27386 
NB     :     170      175      180 
PMAP   : line by line sequence mapping 
P      :       400     Q      :       80 
PFACT  :    Left 
NBMIN  :       2 
NDIV   :       2 
RFACT  :    Left 
BCAST  :   1ring 
DEPTH  :       0 
SWAP   : Mix (threshold = 640) 
L1     : transposed form 
U      : transposed form 
EQUIL  : no 
ALIGN  : 8 double precision words 
 
- The 2D graph is generated for each test. 
- The following scaled residual checks will be computed: 
   1) ||Ax-b||_oo / ( eps * ||A||_1  * N        ) 
   2) ||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) 
   3) ||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) 
- The relative machine precision (eps) is taken to be            
                                                                  1.110223e-16 
- Computational tests pass if scaled residuals are less 

   than    16.0 
 ====================================== 
T/V                    N         NB     P      Q               Time             Gflops 
--------------------------------------------------------------------------------------- 
WR00L2L2       27386   170     400     80             244.22          5.607e+01 
--------------------------------------------------------------------------------------- 
||Ax-b||_oo / ( eps * ||A||_1  * N   ) = 0.0021722 ....    PASSED 
||Ax-b||_oo /( eps*||A||_1*||x||_1  ) =  0.0039217.  PASSED 
||Ax-b||_oo /(eps*||A||_oo*||x||_oo ) = 0.0006798  PASSED 
================================================ 
 T/V                   N         NB     P     Q               Time             Gflops 
--------------------------------------------------------------------------------------- 
WR00L2L2       27386   175     400     80             242.51          5.647e+01 
--------------------------------------------------------------------------------------- 
||Ax-b||_oo /( eps *||A||_1 * N) =       0.0021881 ...... PASSED 
||Ax-b||_oo / ( eps *||A||_1* N ) =      0.0021881 ...... PASSED 
||Ax-b||_oo/(eps* ||A||_1*||x||_1) =0.0039504 ...... PASSED 
||Ax-b||_oo/(eps*||A||_oo*||x||_oo ) =0.0006847... PASSED 
================================================ 
T/V                     N        NB     P     Q               Time             Gflops 
--------------------------------------------------------------------------------------- 
WR00L2L2       27386   180     400     80           266.51       5.138e+01 
---------------------------------------------------------------------------------------
||Ax-b||_oo /( eps * ||A||_1  * N) =   0.0023373 ...... PASSED 
||Ax-b||_oo /(eps*||A||_1*||x||_1)= 0.0042198 ...... PASSED 
||Ax-b||_oo/(eps*||A||_oo*||x||_oo)= 0.0007314 ... PASSED 
================================================ 
Finished      3 tests with the following results: 
              3 tests completed and passed residual checks, 
              0 tests completed and failed residual checks, 
              0 tests skipped because of illegal input values. 
--------------------------------------------------------------------------------------- 
End of Tests 

6   CONCLUSIONS 
We have executed an application programme for fractals 
analysis by parallel programming technique on cluster sys-
tem and executed it in successful manner. However, we 
have to check the various codon of DNA sequence and 
should keep the corresponding fractal values in a database. 
By comparing the fractal values of the part of available se-
quence, we can predict the characteristic of the species. Al-
so, we can determine the possibility of occurring certain 
hereditary diseases. Depending on the generation of infor-
mation by biologists using fractal analysis method we can 
predict various cases of fractal dimension. Commodity 
processor-based clusters have rapidly become the compute 
systems of choice for computational modeling and simula-
tion in many scientific fields. Many biological computa-
tions such as genomic and protein analysis are increasingly 
being performed on large-scale clusters based on Linux. 

7   ACKNOWLEDGMENTS 
This research was supported by Centre for High Perfor-
mance Computing Lab at Federal Institute of Science & 
Technology [FISAT], Cochin, India. Bio-Informatics Centre 

of University of Kerala contributed significant tools under 
the sponsorship of University Grants Commission [UGC], 
India. 

REFERENCES 
[1] Caetano Traina Jr, Agma Traina, Leejay wu, Christos Falouts, 

Dept. of Computer Science & Statistics-University of Sao Paulo, 
Brazil, “Fast feature selection using fractal dimension, Fractal Analysis 
– Statistical Method”, Scitech Publishers, Page 243-245.  

[2] Donald Hearn & Pauline Baker, Computer Graphics, Prentice  Hall 
of India,  2003,  page 362-375 

[3] Daniel Osman, David Newitt, ‘Fractal based image analysis of Human 
Trabecular bone using the box counting algorithm’ , Fractals Vol.6, 
No.3 (1998)275-283, World Scientific Publishing Company  

[4]  Achuthsanker S Nair, “ Computational Biology & Bioinformatics: A 
Gentle Overview”,  Communications of Computer Society of India, 
2007, Page 21  

[5] Ana L.N. Fred, Member, IEEE, and Anil K. Jain, Fellow, IEEE, 
Combining Multiple Clusterings Using Evidence Accumulation, 
IEEE Transactions On Pattern Analysis And Machine Intelligence, 
VOL. 27, NO. 6, JUNE 2005, Page  835.  

[6] Dinesh Kadamuddi and Jeffrey J.P. Tsai, Fellow, IEEE, Clustering 
Algorithm for Parallelizing Software Systems in Multiprocessors 
Environment, IEEE Transactions On Software Engineering, VOL. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014                                                             33 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

26, NO. 4, APRIL 2000, Page 340  
[7] Hyo Jung Song, Member, IEEE, and Andrew A. Chien, Senior 

Member, IEEE Computer Society, ‘ Feedback-Based Synchroniza-
tion in System Area Networks for Cluster Computing’, IEEE 
Transactions On Parallel And Distributed Systems, VOL. 16, NO. 
10, October 2005, Page 908  

[8] Jian Yu, Member, IEEE, ‘General C-Means Clustering Model’ IEEE 
Transactions On Pattern Analysis And Machine Intelligence, VOL. 
27, NO. 8, August 2005 Page, 1197  

[9] Alexander Marquardt, Vaughn Betz, and Jonathan Rose, ‘Speed 
and Area Tradeoffs in Cluster-Based FPGA Architectures’, IEEE 
Transactions On Very Large Scale Integration (VLSI) Systems, 
VOL. 8, NO. 1,  February 2000, Page 84.  

[10]  Johan Vromans ‘Programming PEARL-Quick   Reference Guide’ 
O’REILLY Publishers, 2004  

[11] Ruchir Shah, Bhardwaj Veeralli, Senior member IEEE, ‘On the De-
sign of Adaptive and Decentralized Load balancing algorithms 
with Load estimation for computational grid environments’, IEEE 
Transactions on parallel and distributed systems, Vol18, No.12, 
Dec 2007.   

[12]  Herbert F. Jelinek , School of Community Health Charles Sturt 
University, Eduardo Fernandez, Instituto de Bioinge-
niera,Universidad Miguel Hernandez ,Elche , Spain, Neurons and 
fractals: how reliable and useful are calculations of fractal dimen-
sions.  

[13] Chaos, Solitons and Fractals 11 (2000) 825±836, Fractals related to 
long DNA sequences and complete genomes, Bai-lin Hao , H.C. 
Lee , Shu-yu Zhang  

[14] Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, 
Klobutcher LA, Hatfield DL, Gladyshev VN (January 2009). "Ge-
netic code supports targeted insertion of two amino acids by one 
codon". Science 323 (5911): 259–61. doi:10.1126/science.1164748.  

 
 
 
 
 

 

IJSER

http://www.ijser.org/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088105
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088105
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088105
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1126%2Fscience.1164748

	1 Introduction
	2 Box Counting Method For Fractals Computation
	3 Design Of Cluster Algorithm For Nucleotide Fractals
	4.1 The Application Programming Interface

	6   Conclusions
	7   Acknowledgments
	References



